--use of AQS data in EPA's regulatory program

AQS Data The Building Blocks for Air Quality Decisions

Tom Helms

2006 AQS Conference San Antonio, TX

June 5 - 9, 2006

The 16th annual AQS Conference Holiday Inn San Antonio Riverwalk Hotel 217 N. St. Mary's Street

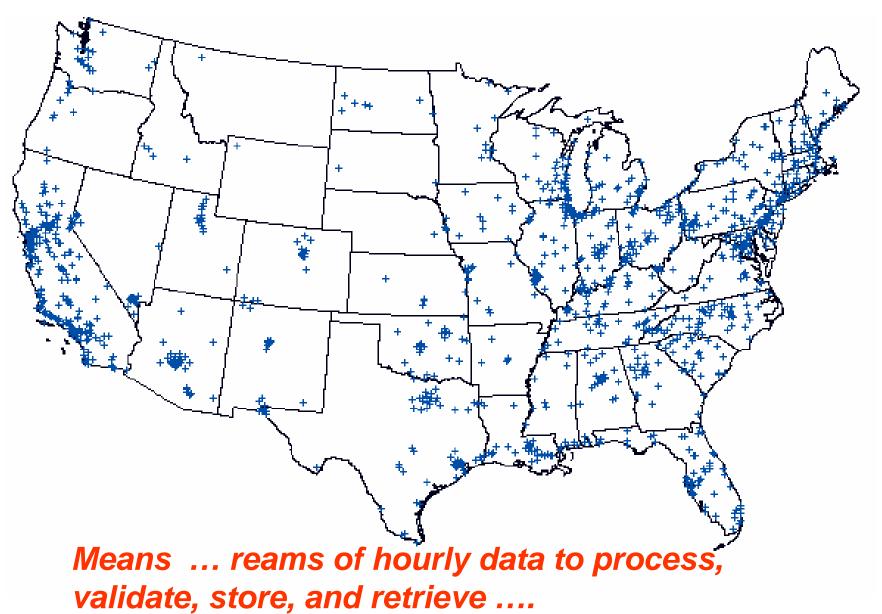
Air Quality System (AQS)

2006 AQS Conference

San Antonio, TX

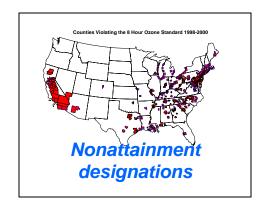
Wednesday, Day 1 June 7, 2006

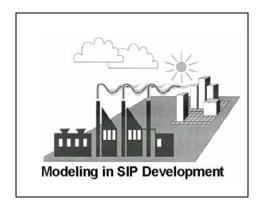
<u>Time</u>	Session Topic	
1:00 to 3:00	use of AQS data in EPA's regulatory program AQS data certification process new continuous PM submittal procedures proposed monitoring strategy precision gas method codes for NCOR	Tom Helms David Lutz Lew Weinstock Lew Weinstock Lew Weinstock


--use of AQS data in EPA's regulatory program

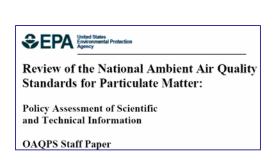
Success for today

- Discuss the importance of valid, quality-assured air quality data key to the local and national air quality planning and evaluation processes.
- Focus on 5 activities that rely on air quality data for success.
- Show examples where data from the AQS system was (is) critical to national policy development and associated control efforts.

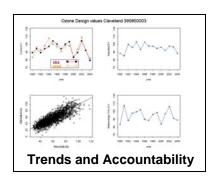

Lot of Ozone Air Monitors ...



Let's take at how the data you collect, process, and review is used



A SIP revision is made up of a narrative section, which is like a summary report, and a package of rules, regulations, and agreements, to legally fulfill what is written in the narrative.


Only one State Implementation Plan (SIP) exists for each state. For Texas, this document was initially approved in May 1972. Rather than rewriting the entire SIP regularly, parts of the SIP are simply revised as needed.

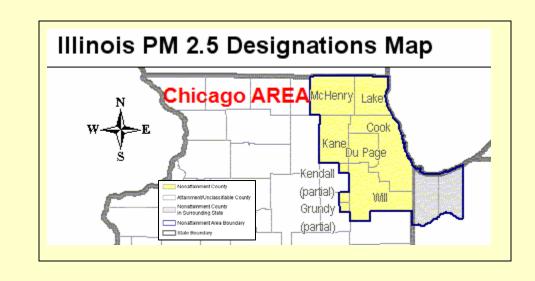


Air monitoring technology and data have come a long way

Let's take a look at 5 efforts that must have accurate and timely air quality to succeed ...

Actions that depend upon valid air quality data...

- 1. Nonattainment Area designations/redesignations
- 2. Air quality modeling and strategy development for SIPs
- 3. Public air quality alerts and information reports like AIRNOW
- 4. Support National Ambient Air Quality Standard setting process
- 5. Progress and Accountability ... data reviews, trends, program evaluations



Actions that depend upon sound air quality data...

Nonattainment Area designations ... and redesignations

Areas that cause or contribute to violations of the NAAQS.

Designating "nonattainment areas ... then re-designating them (plus "maintenance" plans)

8-hr ozone designations and classifications ...

Air Quality data was the 1st criteria used in the PM and Ozone nonattainment designations..

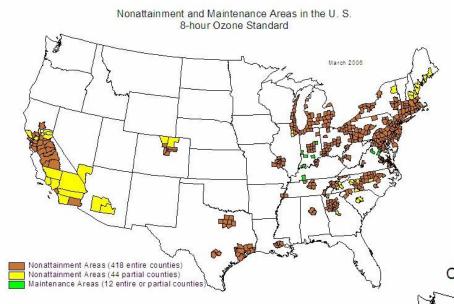
Chapter 2 8-Hour Ozone Designations and Classifications

Key:

County - County name

Desig - Designation: W for whole county nonattainment, P for partial county nonattainment, U for unclassifiable

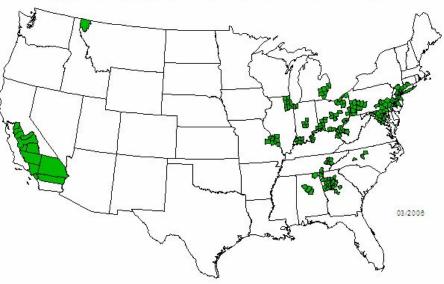
DV2003 - Design value for the county based on 2001-2003 data


EAC - Y if the county is participating in an Early Action Compact

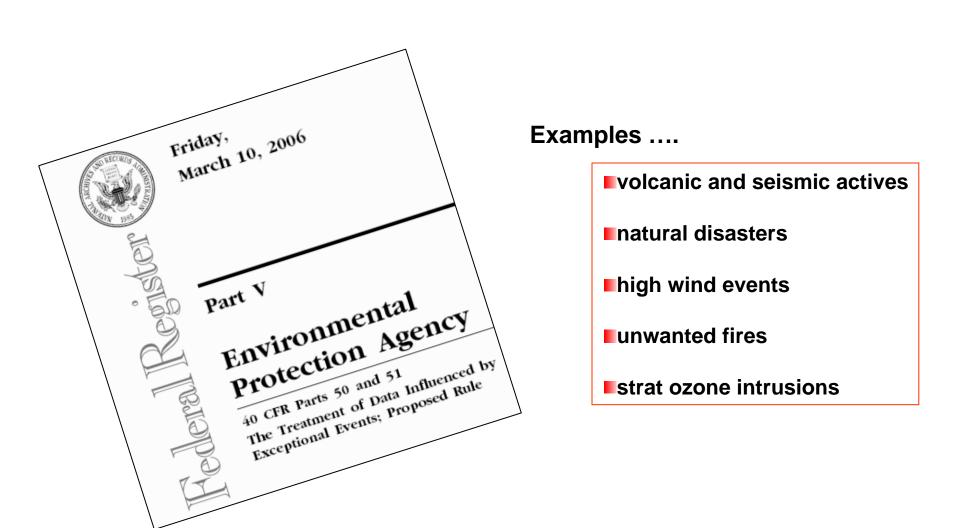
Category - Subpart 1 or Subpart 2

Classification - Classification for the nonattainment area

County	Desig	DV2003	EAC	Category	Classification
alifornia			_		
Amador and Calaveras	s Cos., CA: (Cent	ral Mountai	n Cos.)		
Amador	W	85		Subpart 1	
Calaveras	W	91		Subpart 1	
Chico, CA					
Butte	W	89		Subpart 1	
Imperial Co., CA					
Imperial	W	87		Subpart 2	Marginal
Kern County (Eastern	Kern), CA				
Kern	Р	115		Subpart 1	
Los Angeles-San Berno	ardino Cos.(W Mo	ojave Deseri	t), CA		
Los Angeles	P	126		Subpart 2	Moderate
San Bernardino	Р	131		Subpart 2	Moderate
Los Angeles-South Cod	ast Air Basin, CA				
Los Angeles	Р	126		Subpart 2	Severe 17
Orange	W	86		Subpart 2	Severe 17
Riverside	Р	118		Subpart 2	Severe 17
San Bernardino	Р	131		Subpart 2	Severe 17


Designations based on ozone and PM _{2.5} air quality data ...

8-hr ozone 85 ppb or greater

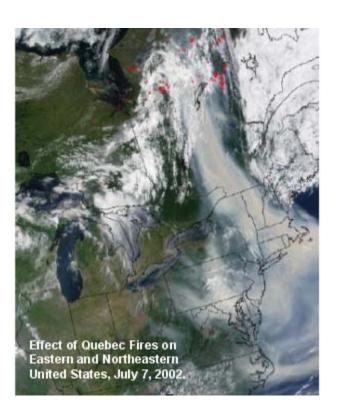

Counties Designated Nonattainment for PM-2.5

PM _{2.5} 15 ug/m³ or greater

They can play a role ... especially for PM...

Exceptional events and the EPA rulemaking ...

Friday, March

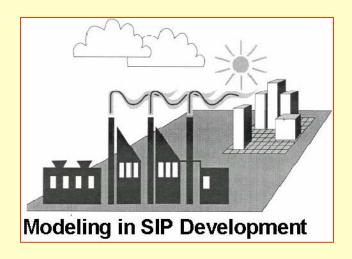

March 10, 2006

Exceptional Events Rulemaking

Part V

Environmental Protection Agency

40 CFR Parts 50 and 51 The Treatment of Data Influenced by Exceptional Events; Proposed Rule


EPA is proposing to Implement section 319(b)(3)(B) and section 107(d)(3) authority to exclude air quality monitoring data from regulatory determinations related to exceedances or violations of the National Ambient Air Quality Standards (NAAQS) and avoid designating an area as nonattainment, redesignating an area as nonattainment, or reclassifying an existing nonattainment area to a higher classification if a State adequately demonstrates that an exceptional event has caused an exceedance or violation of a NAAQS.

Actions that depend upon valid air quality data...

Air quality modeling and SIP strategy development

Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hour Ozone NAAQS

> EPA-454/R-05-002 October 2005

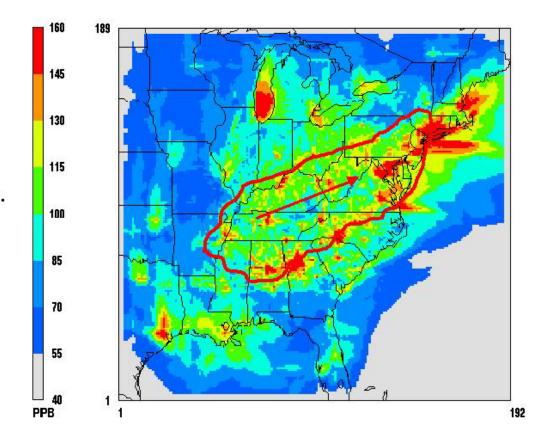
SIP with attainment demos for 8-hr ozone and PM 2.5 due later in the 2000s ...

Input for air quality modeling and strategy development for SIPs

Air Quality data is key to the use of relative reduction factors in modeling...

Modeled Attainment Tests

- All O3/PM2.5/RH modeled attainment tests use model estimates in a "relative" sense
 - Premise: models are better at predicting relative changes in concentrations than absolute concentrations
- Relative Reduction Factors (RRF) are calculated by taking the ratio of the model's future to current predictions of PM2.5
- RRFs are calculated for ozone and for each component of PM2.5 and regional haze

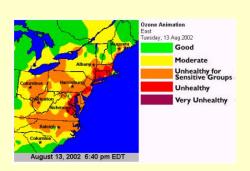

Applying the Modeled Tests

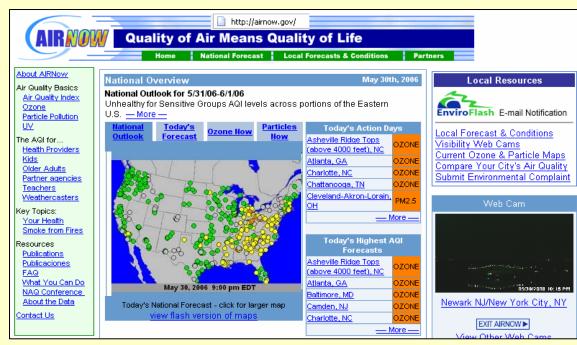
- Future concentrations are estimated using (component specific) RRF's and ambient measurements
 - RRF X ambient concentration = Future concentration
- Ambient data
 - Ozone- ozone data from AIRS
 - PM2.5- FRM and PM2.5 speciation measurements

Input for air quality modeling and strategy development for SIPs

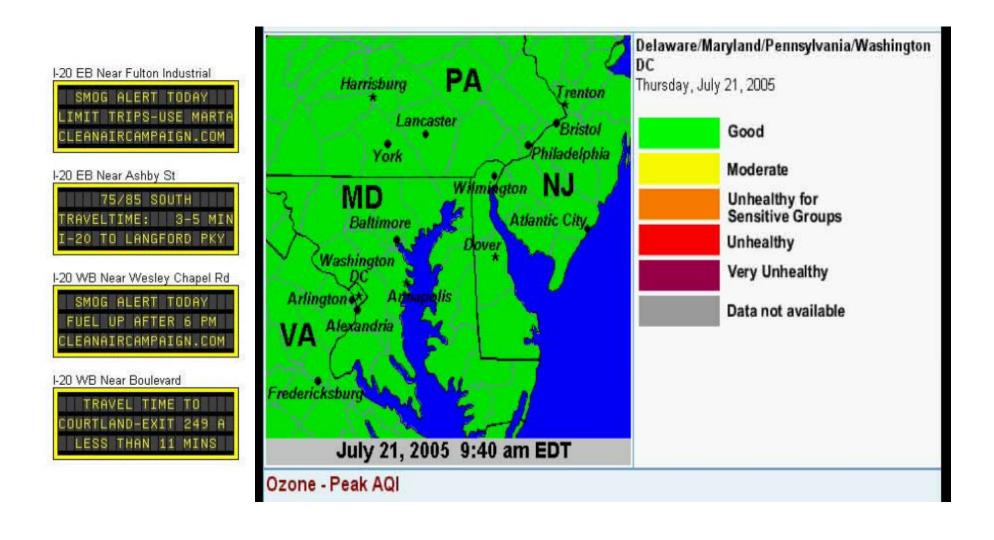
Modeling ... adjusted for "reality" using RRFs and air quality measurements ...

Ozone conc. (PPB)





Actions that depend upon valid air quality data...



Public air quality alerts and information reports

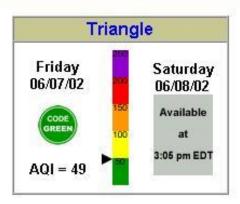
Public air quality alerts and reports...

Public air quality alerts and reports...

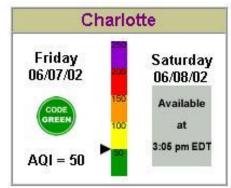
North Carolina Department of Environment and Natural Resources

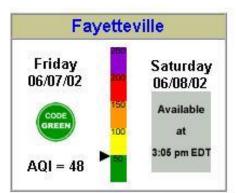
Division of Air Quality

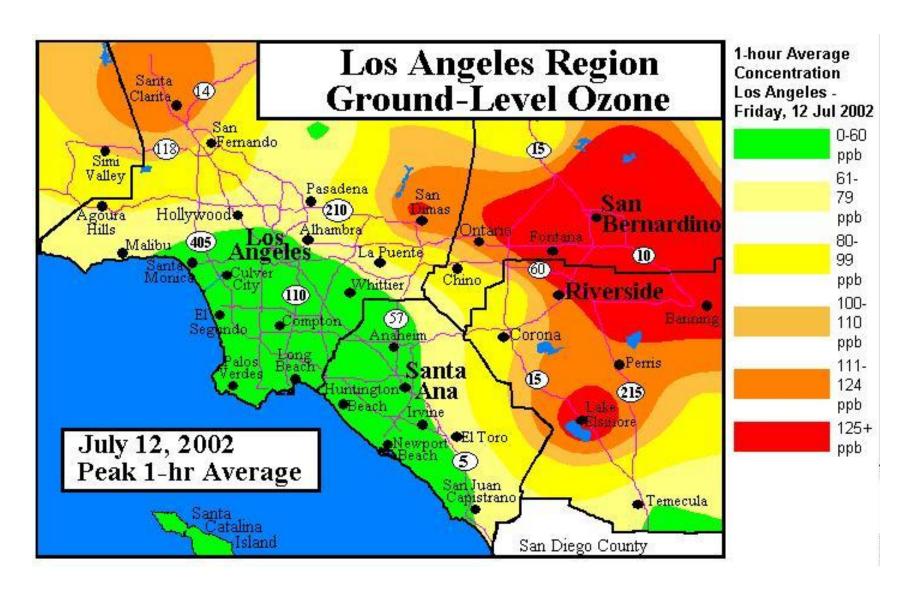
Home Events Calendar Staff Directory


Contact DAQ

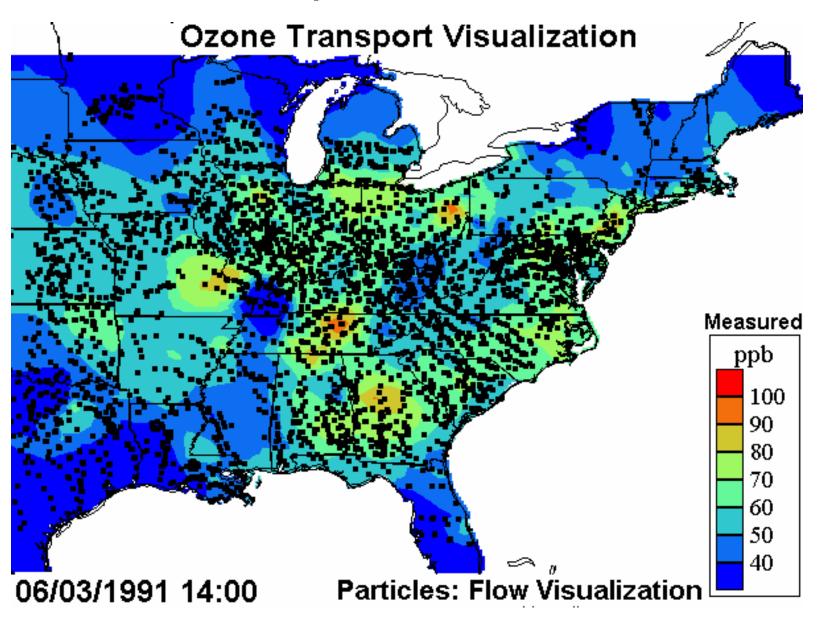
Search


N.C. Air Awareness Program >> Ozone Forecast Center





Last Modified: 12:01 AM Friday, 06/07/2002

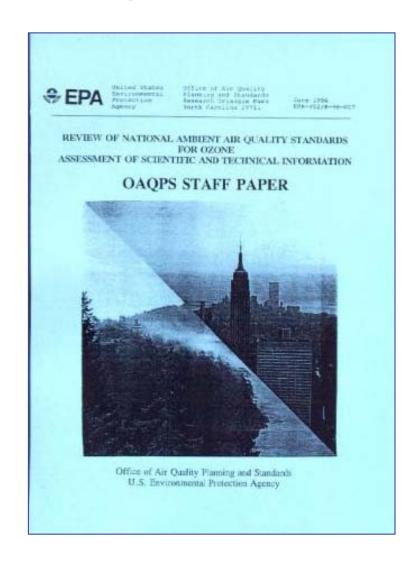

Triad Area Air Quality Forecast (Courtesy of Forsyth Co. Environmental Affairs Dept.)

Public air quality alerts and reports...

Public awareness ---picture is worth a thousand words ...

Video developed by staff of the Ozone Transport Commission ...

Actions that depend upon valid air quality data...



Support National Ambient Air Quality Standard setting process

The 2 main sources of monitor data used for the NAAQS assessment are state-supplied data from various types of monitors housed in the Air Quality System (AQS) data base (which includes National Park Service monitors) and the Clean Air Status and Trends Network (CASTNET).

Data support National Ambient Air Quality Standard (NAAQS) setting process

Data support National Ambient Air Quality Standard (NAAQS) setting process

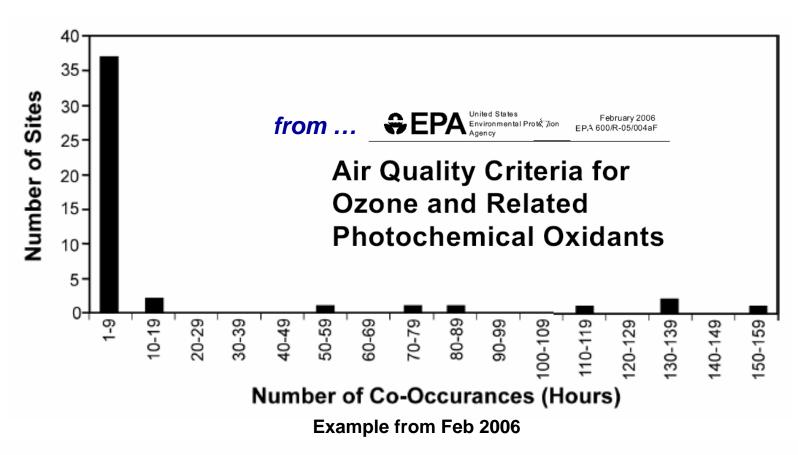
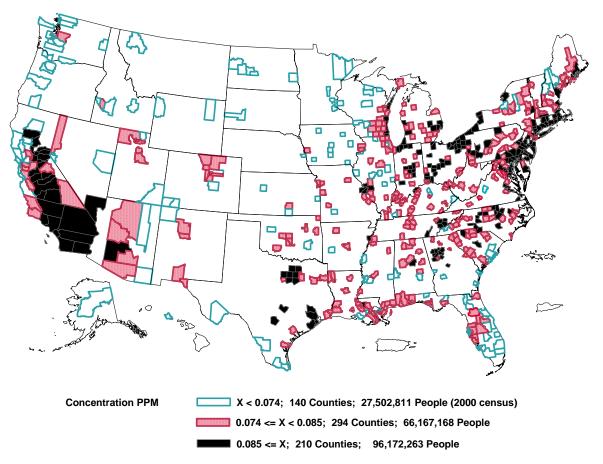



Figure 3-22. The co-occurrence pattern for O_3 and nitrogen dioxide using 2001 data from the AQS. There is co-occurrence when hourly average concentrations of O_3 and another pollutant are both ≥ 0.05 ppm.

Data support National Ambient Air Quality Standard (NAAQS) setting process

Example analysis ... Ozone Staff Paper

High 8-hr average O₃ concentrations tend to occur near larger urban areas in the same patterns as the 1-hr concentrations

Also required

Regulatory impact analyses (RIA) work for new NAAQS and policy implementation rules

A Regulatory **Impact** Analysis (RIA) outlines the analyses EPA conducted on the costs and benefits of achieving a revised (NAAQS) such as PM2.5 ... and some alternative PM standard options.

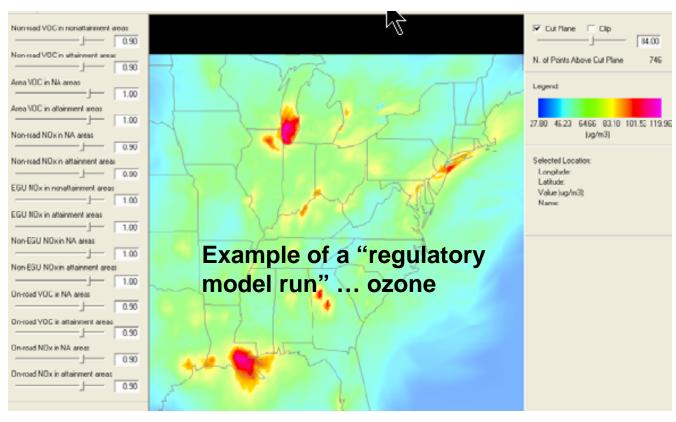
Also required

Regulatory impact analyses (RIA) work for new NAAQS and policy implementation rules

A Regulatory **Impact** Analysis (RIA) outlines the analyses EPA conducted on the costs and benefits of achieving a revised (NAAQS) such as PM2.5 ... and some alternative PM standard options.

Example from PM 2.5 RIA

Annual Average Design Values


These projected annual design values were calculated using the Speciated Modeled Attainment Test (SMAT) approach, the details of which can be found in the report "Procedures for Estimating Future PM2.5 Values for the CAIR Final Rule by Application of the (Revised) Speciated Modeled Attainment Test (SMAT)" (EPA, 2004).

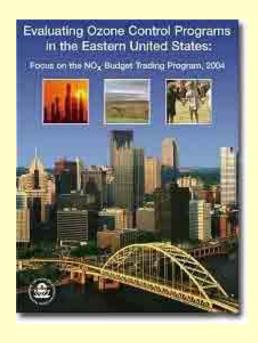
The starting point for these projections is a 5 year weighted average design value for each site. The weighted average is calculated as the average of the 1999-2001, 2000-2002, and 2001-2003 design values at each monitoring site. By averaging 1999-2001, 2000-2002, and 2001-2003, the value from 2001 is weighted three times, whereas, values for 2000 and 2002 are each weighted twice, and 1999 and 2003 are each weighted once. This approach has the desired benefits of (1) weighting the PM2.5 values towards the middle year of the five-year period (2001), which is the Base Year for our emissions projections, and (2) smoothing out the effects of year-to-year variability in emissions and meteorology that occurs over the full five-year period.

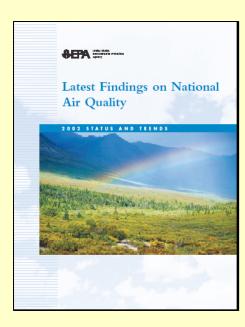
24-Hour Average Design Values

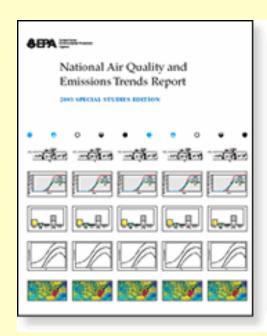
The daily design values are based on applying a similar projection method. As with the annual design value, monitor data for the years 1999 to 2003 are used as the basis for the projection. There are several steps in the projection for each of the base years of monitoring data:

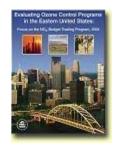
Modeling for a Regulatory Impact Analysis ...

Cost evalvations ————and estimates

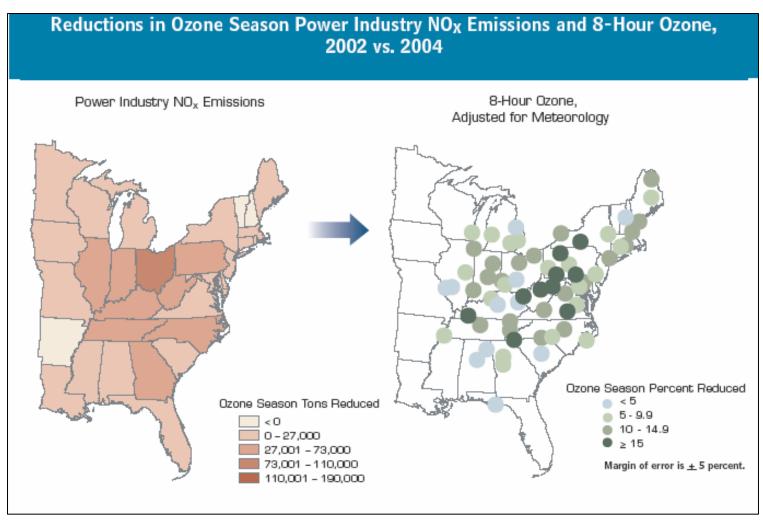

PM 2.5 RIA 0	Costs of Attaining 15/65	Standard: 3% and 7% Dis	count Rate (Billion 1999\$)
Urban Area	2015 Base case	Costs of Urban Area Controls (3%)	Costs of Urban Area Controls (7%)
Atlanta		\$1.9*	\$2.1*
Chicago		\$1.9 to \$2.3*	\$2.1 to \$2.4*
NY/Philadelphia	Regulatory Base Case for Each	Attains standard wi	th regulatory baseline
San Joaquin	Urban Area	\$1.4 to \$1.7*	\$1.4 to \$1.8*
Seattle		Attains standard wi	th regulatory baseline




Actions that depend upon sound air quality data...


Progress and Accountability ... Data reviews, trends, program evaluations...

..... measuring success



Progress and accountability example... air quality data trends used to gage success

Focusing on 2002-2004 ...

24-005-1007-1

24-005-3001-1

24-013-0001-1

24-015-0003-1x

24-017-0010-1

24-021-0037-1

24-025-1001-1x

24-025-9001-1x

Carroll Co

Charles Co

Harford Co

Kent Co

Frederick Co

Cecil Co

3v

3v

3v

3v

3v

3v

3v

3a

3a

3v

3v

3v

3v

Example of Ozone data output for analysis work ...

D (24) Maryland	v	Code	N e a r			Comp 2 Y:			X F				Avg 4th		s >= Y2		Tot Exc			County				s	t:		ς,	reet Addr					Mos	nitor ty
	5	3 v											95				36	Was	hing					-VA-WV	_	>								
	5	3 v	$\underline{\mathbf{n}}$			6 9		97	2 10		88		95	27	5	4	36							_	:U:	/	A-WV	EEN ANNE	ABID IIA	WCOM D	2010		SL.	NAME OF
		3 V	$\underline{\mathbf{n}}$	100	9	7 99	∍	99	10	80	84	87	93	22	3	5	30		T ME.			_		_	\sim	_		O1 'Y'STR				RIMDEL.		
	8	3 v					_		_				88		_		24				ltimo	re, D	C-MD	-VA-WV		\rightarrow	A-WV	,01 1 511.	,	·IILADL	,	NONDED .		1110
		3 v				0 10		99			76		85	21	2	1	24			TILLE					R:			REENSIDE D	RIVE	COCKEY	SVILLE	MD	SL.	AMS
		3v	<u>n</u>	95	10	0 10	_	98	11	04	81	80	88	16	3	2	21	ESS		n.		T			\sim			ODWARD &					NAI	IS, SLAMS
		3 V					_						85		_	_	13	was.	ning	on-Ba	Tt 1mc	re, D	C-MD	-VA-WV		$\overline{}$	A-WV							
		3v	<u>n</u>	99	10	0 9	5	98	,	95	81	79	85	10	2	1	13	D1.4			*** 7 4	_ ***			.31		13	00 W. OLD	LIBER	TY ROA	D, WINF	IELD, MD	SL.	ams
		3 v			_		_						94		_	3	28	Pn1	Lade	.pnia-	M 1 TIM3	п-аст	anti	c Ci,P		(Ci,PA	-NJ-MD-DE						
	4	3v 3v	n	98	9	6 9	_	96	2 11	12	89	83	94 91	19	6	3	28 22	T-T		B.		B			T.	\sim		E.273, FAI	R HILL	,CEIL	CO., MAR	YLAND	SL.	MS
				0.0	_		_	0.5							_			was	ning	on-Ba	Ttime	re, D	C-MD	-VA-WV			A-WV							
	3	3v	$\underline{\mathbf{n}}$	96	9	4 9	-	95	,	98	93	63	91 83	15	6	1	22	Was		on Pa	1 t i m.	D	c .m	ສ VA−₩V	, C			MD CORRE	CTIONA	L CAM	P, HUGH	ESVILLE	MD SL.	MS
		3 a. 3 a.	_	00	10	0 9	4	98		95	77	22	83	13	3	1	17 17		ning: DERIG		TETH	re, D	C-mD		R:	/	A-WV							***
		3v	-11	22	10	0 5.	1	50	-	23			96	13	3	_	40				1 + i m/	wa D	c am	VW-WV			A-WV	REDERICK M	UNICIP	AL AIR	PORT		SL.	ums
	6	3 v	n	99	9:	9 99	_	99	2 11	13	89	87	96	27	7	6	40		EWOOI			10, 2	CIL	E				GEWOOD AR	MV CHE	M CENT	ED EDGE	MW GOOR	NI 6.1	MS, SLAMS
	4	3 v				9 9		99	2 11			82	94	24	à	3	31	LDO							5:	_		38 ALDINO						
		3 v		100							00		89		•		22	Ken	t Co	MD					<u> </u>		_		1.0112,					
		3 v	n	100	10	0 10	1	100	2 10	Π4	86	78	89	17	4	1	22	11011						K	El	(KI	NT COUNTY	; MILL	INGTON			SL.	AMS
		3 a	=							-	-		83		-	-	16	Was	hinat	on-Ba	1 t i ma	re. D	C-MD-	-VA-WV		_	A-WV							
		3a	n	86	9	3 10	٦.	93		92	78	80	83	11	3	2	16		KVILI			10, 2		L			L	THROP E S	MITH E	NV.ED	CENTER	ROCKVIL:	LE SL.	AMS
		3 v					_			-			94			_	25				1 t i me	re. D	C-MD	-VA-WV		_	A-WV							
1-033-0002-1	_		n	99	9	4	0	64		98	83			17	3	0	20		ENBE			, -			ю:	<i>></i>	GG	DDDARD SPA	CE FLI	GHT CE	NTER		NA	IS, SLAMS
	4	3v				7 99		95		01		86	94	16	4	5	25	01(1						P				RINCE GEOR	GES EQ	UESTRI	AN CEN	TER		
		3 a.	-										83				21	Was	hina	on-Ba	ltimo	re. D	C-MD	-VA-WV		ノ	A-WV							
		3 a.	n	96	10	0 10	_	99	1	96	78	77	83	17	3	1	21		ERST			, -			8.			701 ROXBU	RY RD,	HAGERS	TOWN, MA	RYLAND	SL.	ams
ltimore city			-														9				ltimo	re, D	C-MD	-VA-WV			A-WV							
-510-0053-1			n	93	9	7	0	63	1/	02	54			9	0	0	9					, -			9!		29	9 PONCA S	TREET				UN	CNOWN
				М	D	(2	4)	М	ar	уl	an	d				N e a		ct		mp	Д	vg	x	4		ма	ax	Avg	ſ	Day	s >=	85	Tot	
	1											DV	7	Cod	e	r	Y1	7	72	Υ3	F	ct	F	Y:	1	Y2	Y3	4th	L	Y1	Y2	Y 3	Exc	!
	•																																	
			4	_																														
		_ 4 _	1	A	л	ıe .	Ar	·wn	de.	1	C	95)	3v														95					36	
			•	- 2	4	.00	2	.00	14	_ +		95		3v			99		96	95		97	2	109		88	88	95		27	5	4	36	
				_	7-	-00	<u> </u>	-00	T-4.	<u> </u>	Δ.	90	•	JV		n	99	=	, 0	95		21	_	103	7	00	00	, 93			5	4	36	'
				- 2	4-	-00	3-	-00	19	-1		93	}	3v		n :	100	9	7	99		99		108	3	84	87	93		22	3	- 5	30	I
											_					_															_			
				В	аL	Ltl	INO	re	C	O		88	•	3v														88					24	:

97 100 100

95 100 100

99 100 95

94 95

n 100

99 100

112

2 113

2 115

77 77

Example of Ozone data ... 2002-2004...continued

Data completeness

MD (24) Marylan	d		N		<u> </u>		_									
	DV	Code	a	Рс У 1	t Co Y2	omp Y3	Avg Pct	X F	4t Y1	h Ma Y2	х УЗ	Avg 4th	Day Y1	rs >= Y2	85 ¥3	Tot Exc
			_ <u>_</u> _		12	13	PGC			12		40H		12	13	EXC
Anne Arundel C	95	3 v										95				36
24-003-0014-1x	95	3v	$\underline{\mathbf{n}}$	99	96	95	97	2	109	88	88	95	27	5	4	36
24-003-0019-1	93	3 v	$\underline{\mathbf{n}}$	100	97	99	99		108	84	87	93	22	3	5	30
Baltimore Co	88	3v										88				24
24-005-1007-1	85	3 v	$\underline{\mathbf{n}}$	97	100	100	99		103	76	77	85	21	2	1	24
24-005-3001-1	88	3 v	$\underline{\mathbf{n}}$	95	100	100	98		104	81	80	88	16	3	2	21
Carroll Co	85	3 v										85				13
24-013-0001-1	85	3 v	$\underline{\mathbf{n}}$	99	100	95	98		95	81	79	85	10	2	1	13
Cecil Co	94	3 v										94				28
24-015-0003-1x	94	3 v	$\underline{\mathbf{n}}$	98	96	95	96	2	112	89	83	94	19	6	3	28
Charles Co	91	3 v										91				22
24-017-0010-1	91	3 v	<u>n</u>	96	94	95	95		98	93	83	91	15	6	1	22
Frederick Co	83	3a										83				17
24-021-0037-1	83	3a	$\underline{\mathbf{n}}$	99	100	94	98		95	77	77	83	13	3	1	17
Harford Co	96	3 v										96				40
24-025-1001-1x	96	3 v	<u>n</u>	99	99	99	99	2	113	89	87	96	27	7	6	40
24-025-9001-1x	94	3v	<u>n</u>	100	99	99	99	2	115	85	82	94	24	4	3	31
Kent Co	89	$3\mathbf{v}$										89				22

Example of Ozone data ... 2002-2004...continued

3 years and 4th high over 3 years

MD (24) Marylan	d		N									•				
			е													
			а	Po	t Co	omp	Avg	X	4t	h Ma	X	Avg	Day	/s >=	85	Tot
	DV	Code	r	Y1	¥2	Y3	Pct	F	Y1	¥2	¥3	4th	Y1	¥2	Y3	Exc
Anne Arundel C	95	3 v										95				36
24-003-0014-1x	95	3 v	$\underline{\mathbf{n}}$	99	96	95	97	2	109	88	88	95	27	5	4	36
24-003-0019-1	93	3 v	$\underline{\mathbf{n}}$	100	97	99	99		108	84	87	93	22	3	5	30
Baltimore Co	88	3 v										88				24
24-005-1007-1	85	3 v	$\underline{\mathbf{n}}$	97	100	100	99		103	76	77	85	21	2	1	24
24-005-3001-1	88	3 v	$\underline{\mathbf{n}}$	95	100	100	98		104	81	80	88	16	3	2	21
Carroll Co	85	3 v										85				13
24-013-0001-1	85	3v	$\underline{\mathbf{n}}$	99	100	95	98		95	81	79	85	10	2	1	13
Cecil Co	94	3 v										94				28
24-015-0003-1x	94	3v	$\underline{\mathbf{n}}$	98	96	95	96	2	112	89	83	94	19	6	3	28
Charles Co	91	3 v										91				22
24-017-0010-1	91	3v	$\underline{\mathbf{n}}$	96	94	95	95		98	93	83	91	15	6	1	22
Frederick Co	83	3a.										83				17
24-021-0037-1	83	3a	$\underline{\mathbf{n}}$	99	100	94	98		95	77	77	83	13	3	1	17
Harford Co	96	3 v										96				40
24-025-1001-1x	96	3 v	$\underline{\mathbf{n}}$	99	99	99	99	2	113	89	87	96	27	7	6	40
24-025-9001-1x	94	3 v	$\underline{\mathbf{n}}$	100	99	99	99	2	115	85	82	94	24	4	3	31
Kent Co	89	3v										89				22

Example of Ozone data ... 2002-2004...continued

												b	y yea	ar	tota	al
MD (24) Marylan	d		Ν													
			е													
			а		et Co	-	Avg	X		h Ma		Avg	_	s >=		Tot
	DV	Code	r	Y1	Y2	ΥЗ	Pct	F	Y1	Y2	ΥЗ	4th	¥1	Y2	ΥЗ	Exc
Anne Arundel C	 95	3v										95				36
24-003-0014-1x	95	3 v	\mathbf{n}	99	96	95	97	2	109	88	88	95	27	5	4	36
24-003-0019-1	93	3 v	n	100	97	99	99		108	84	87	93	22	3	5	30
Baltimore Co	88	3 v	_									88				24
24-005-1007-1	85	3 v	$\underline{\mathbf{n}}$	97	100	100	99		103	76	77	85	21	2	1	24
24-005-3001-1	88	3v	\mathbf{n}	95	100	100	98		104	81	80	88	16	3	2	21
Carroll Co	85	3 v										85				13
24-013-0001-1	85	3 v	$\underline{\mathbf{n}}$	99	100	95	98		95	81	79	85	10	2	1	13
Cecil Co	94	3v										94				28
24-015-0003-1x	94	3 v	$\underline{\mathbf{n}}$	98	96	95	96	2	112	89	83	94	19	6	3	28
Charles Co	91	3 v										91				22
24-017-0010-1	91	3 v	$\underline{\mathbf{n}}$	96	94	95	95		98	93	83	91	15	6	1	22
Frederick Co	83	3a										83				17
24-021-0037-1	83	3a	$\underline{\mathbf{n}}$	99	100	94	98		95	77	77	83	13	3	1	17
Harford Co	96	3 v										96				40
24-025-1001-1x	96	3 v	$\underline{\mathbf{n}}$	99	99	99	99	2	113	89	87	96	27	7	6	40
24-025-9001-1x	94	3 v	$\underline{\mathbf{n}}$	100	99	99	99	2	115	85	82	94	24	4	3	31
Kent Co	89	3v										89				2.2

Days over 85ppb

Example of ozone data trends from 1985 --- 2004 ...

Ozone 8-Hour Design Value Trends

Data from AQS on 04/01/2005, with combined sites. Web page generated on 05/24/2005.

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	02-04	2002	Avg.	2004
Area name (short)	1987	1988	1989		1991									2000					Diff.	2004	Comp.	Comp.
Albany, GA							81	79					83	85	86	81	74	70	-4	70	91%	97%
Albany, NY	79	84	88	89	83	85	85	85	83	84	81	80	84	80	84	83	87	86	-1	86	95%	95%
Albuquerque, NM	75	72	73	73	71	71	69	70	74	74	71	74	74	75	75	75	77	77	0	77	95%	93%
Alexandria, LA					73	67	57				75	76	80	83	81	78	74	73	-1	73	97%	96%
Allentown, PA	97	105	104	99	94	93	90	84	92	94	95	96	100	97	97	93	91	88	-3	88	100%	100%
Altoona, PA	93	100	96	89	81	84	85	85	89	88	90	92	95	89	84	84	85	81	-4	81	99%	100%
Amador/Calaveras, CA								91	91	97	93	96	96	100	94	92	91	90	-1	90	98%	98%
Amarillo, TX																						
Anchorage, AK																						
Appleton, WI	83	84	86	82	78	74	73	66		78	81	77	80	76	80	78	82	73	-9	73	100%	100%
Asheville, NC	75	83			69	66	64	66	70	73	75	79	83	88	83	85	78	77	-1	77	98%	100%
Athens, GA																		78		78	91%	100%
Atlanta, GA	114	124	113	107	104	105	101	101	109	105	110	113	118	121	107	99	91	93	2	93	99%	99%
Augusta, GA	80	91	86	89	85	87	81	83	87	87	87	91	92	93	87	88	83	83	0	83	99%	99%
Austin, TX	85	84	84	86	84	84	81	82	84	84	81	81	88	88	88	85	84	85	1	85	100%	100%
Baltimore, MD	119	132	125	115	104	106	107	103	107	105	107	104	109	107	104	104	103	94	-9	94	99%	99%
Bangor, ME						67			77	73	73	72	75	72	76	79	83	75	-8	75	97%	98%
Baton Rouge, LA	97	98	98	101	99	96	90	87	91	94	96	94	92	96	91	86	86	89	3	89	98%	97%
Beaumont, TX	85	97	93	100	101	100	97	93	94	91	93	91	88	87	89	90	91	92	1	92	100%	100%
Bellingham, WA					51	58	57	57	57	58	56	56	52	52	50	51	53	57	4	57	95%	98%
Benton Harbor, MI								76	87	94	98	96	96	88	87	87	91	86	-5	86	99%	98%
BerkeleyJefferson,WV																	86	80	-6	80	98%	97%

Closer look ...

Example of ozone data trends from 1985 --- 2004 ...

Evaluating the ozone air quality progress

Ozone 8-Hour Design Value Trends

Data from AQS on 04/01/2005, with combined sites. Web page generated on 05/24/2005.

Beginning ---119 ppb

Ending ---94 ppb

```
Area name (short)

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Baltimore, MD

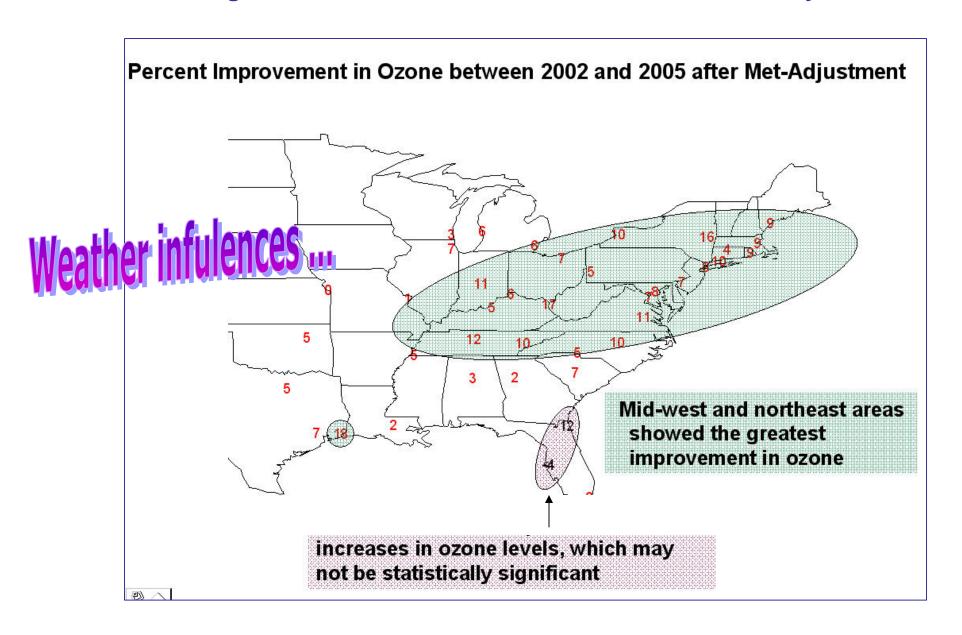
119 132 125 115 104 106 107 103 107 105 107 104 109 107 104 104 103 94
```

18 years of 8-hr ozone design values for Baltimore ...

More

8-hr Ozone ...

How have the numbers changed????

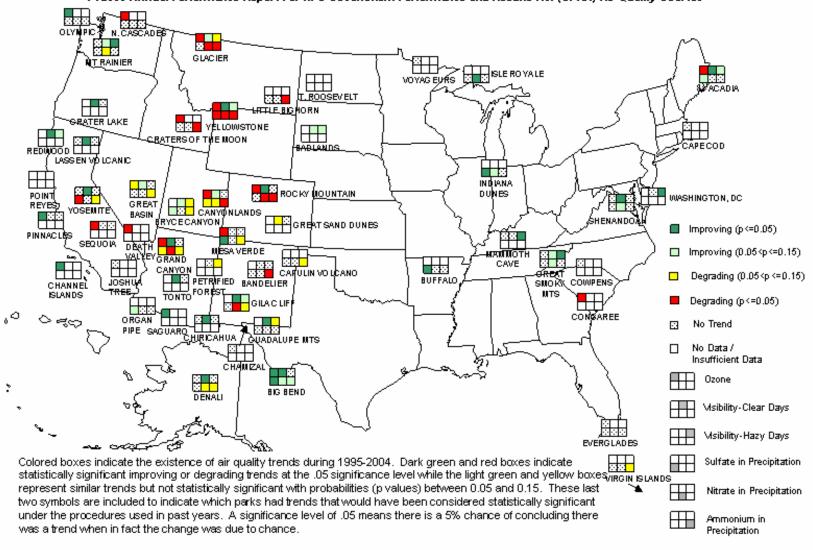

> 2001-2003 2002-2004

2003-2005

2001-2003 2002-2004 2003-2005 Design Value Design Value Design Value Ozone Nonattainment Areas (ppm)* (ppm) (ppm) 0.127 Los Angeles South Coast Air Basin, CA 0.131 0.127San Joaquin Valley, CA 0.115 0.116 0.113 Los Angeles-San Bernardino Cos(W Mojave).CA 0.106 0.107 0.105 0.108 0.104 Riverside Co. (Coachella Vallev). CA 0.104 Houston-Galveston-Brazoria, TX 0.102 0.101 0.103 Nevada Co. (Western Part), CA 0.098 0.098 0.097 Sacramento Metro, CA 0.107 0.102 0.097 Baton Rouge, LA 0.089 0.096 0.086 Dallas-Fort Worth, TX 0.095 0.098 0.1 Philadelphia-Wilmin-Atlantic Ci.PA-NJ-MD-DE 0.106 0.099 0.094 0.103 0.094 Baltimore, MD 0.091 Cleveland-Akron-Lorain, OH 0.103 0.095 0.091 New York-N. New Jersey-Long Island, NY-NJ-CT 0.102 0.095 0.091 0.095 0.094 0.091 |Ventura.Co.CA Washington, DC-MD-VA 0.099 0.096 0.091 Amador and Calaveras Cos (Central Mtn), CA 0.091 0.09 0.091 0.093 Atlanta, GA 0.091 0.09 Detroit-Ann Arbor, MI 0.097 0.092 0.09 0.094 0.088 Door Co. WI 0.09Kern Co (Eastern Kern), CA 0.098 0.092 0.09 0.095 0.09 0.089Providence (All RI), RI Sheboygan, WI 0.089 0.1 0.092 0.097 0.093 0.089 Allegan Co. MI 0.091 Cincinnati-Hamilton, OH-KY-IN 0.096 0.0890.094 Jamestown, NY 0.093 0.089Charlotte-Gastonia-Rock Hill, NC-SC 0.1 0.094 0.088Milwaukee-Racine, WI 0.101 0.09410.088Beaumont-Port Arthur, TX 0.091 0.092 0.088 Columbus, OH 0.095 0.091 0.088 Mariposa and Tuolumne Cos (Southern Mtn), CA 0.091 0.09 0.088 Allentown-Bethlehem-Easton, PA 0.091 0.088 0.087 Indianapolis, IN 0.096 0.092 0.087 Manitowoc Co. WI 0.09 0.083 0.087 Boston-Lawrence-Worcester (E. MA), MA 0.095 0.091 0.086 0.101 0.094 0.086 Chicago-Gary-Lake County, IL-IN 0.086 0.095 0.089 Greater Connecticut, CT

Draft... not certified

Example--Removing the influence of "Weather" from Ozone Air Quality Data


What are the preliminary numbers????

2003-2005

		designated					
state_postal	county_name	area site	dva9901	dva.0002	dva0103	dva0204	dva.0305
CA CA	Riverside	NA area: Lo 060658001	29.8	28.9	27.8	24.8	22.6
CA	San Bernardino	NA area: Lo 060710025	25.3	25.3	25.2	23.4	21.2
PA	Allegheny	NA area: Pit 420030064	20.9	21.4	21.2	20.4	20.8
CA	Riverside	NA area: Lo 060651003	26.7	26.9	25.9	23.5	20.5
CA	San Bernardino	NA area: Lo 060719004	25.8	25.9	24.7	23.3	20.5
CA	San Bernardino	NA area: Lo 060712002	25.1	24.6	23.8	22.1	20.3
CA	Los Angeles	NA area: Lo 060371002	23	23.3	23.6	21.7	19.7
CA	Los Angeles	NA area: Lo 060371103	22.6	22.2	22	21	19.6
TX	El Paso	481410044	9.2	9.7	9.9	10.2	19.2
CA	Kern	NA area: Sa 060290010	23.6	22.8	21.8	20.6	19.0
CA	Los Angeles	NA area: Lo 060371301	23.9	23.6	22.7	20.7	18.7
CA	Los Angeles	NA area: Lo 060371601	25	24.4	23.3	21.5	18.6
CA	Kern	NA area: Sa 060290016	20.6	21.5	20.7	19.6	18.4
AL	Jefferson	NA area: Bir 010730023	21.6	19.6	18	17.5	18.2
CA	Los Angeles	NA area: Lo 060370002	21.8	20.8	20.6	19.4	18.2
MI	Wayne	NA area: De 261630033	18.9	19.9	19.5	18.6	18.2
ОН	Cuyahoga	NA area: Cl: 390350038	20.3	19.2	18.3	17.6	18.1
CA	Kern	NA area: Sa 060290014	22.5	22.1	20.3	19.6	18.0
CA	Tulare	NA area: Sa 061072002	24.7	23.2	21.3	19.5	18.0
ОН	Hamilton	NA area: Cir 390618001	19	17.8	17.1	16.9	17.9
IN	Marion	NA area: Inc 180970066	18.4	18.6	18.1	17.5	17.8
IL	Madison	NA area: St 171190023	20.3	20	19.1	17.9	17.7
OH	Cuyahoga	NA area: Cl 390350060	18.6	18.2	17.4	17	17.7
ОН	Jefferson	NA area: Ste 390810016	19	18.3	17.8	17.6	17.7
TX	El Paso	481410053	20.4	19.3	16.9	17.8	17.7
IN	Lake	NA area: Ch 180890026	17.7	17.7	17.7	17.2	17.5
ОН	Hamilton	NA area: Cir 390610014	19.3	18.6	17.8	16.9	17.5
PA	Lancaster	NA area: La 420710007	16.9	17.1	17	16.8	17.5
GA	Fulton	NA area: Atl 131210039	21.2	19.3	18	17.5	17.4
CA	Los Angeles	NA area: Lo 060374002	20.5	20.1	19.6	18.5	17.3
CA	Los Angeles	NA area: Lo 060374004			20.6	18.6	17.3
IN	Marion	NA area: Ind 180970043	17.9	17.7	17.3	16.6	17.3
ОН	Hamilton	NA area: Cir 390610042	19.1	18.4	17.1	16.5	17.3
PA	York	NA area: Yc 421330008	16.3	16.8	17	16.9	17.3
CA	Fresno	NA area: Sa 060195025	18.5	19.4	19.2	18.7	17.2
IL	Cook	NA area: Ch 170311016	21	19.6	18.4	17	17.2
OH	Jefferson	NA area: St. 390811001	18.2	17.8	17.8	16.9	17.2
СТ	New Haven	NA area: Ne 090090018	16.8	16.4	16.6	16	17.1
CA	Kings	NA area: Sa 060310004	16.6	19	19	18.4	17.0
IL	Madison	NA area: St 171191007	17.3	17.5	17.5	16.9	17.0
IN	Lake	NA area: Ch 180890022	17.1	17.3	17.1	16.4	17.0
NY	New York	NA area: Ne 360610056	17.8	17.6	17.7	16.8	17.0
ОН	Cuvahoqa	NA area: Cl 390350045	16.7	17.5	16.7	16	17.0

Draft... not certified

Air Quality Trends in National Parks, 1995-2004 FY2005 Annual Performance Report For NPS Government Performance and Results Act (GPRA) Air Quality Goal Ia3

Some final thoughts from the "data user's perspective"

Facts that are "key" to the satisfactory use of air quality data:

- **Valid, representative air quality measurements**
- Comprehensive, properly located sampling sites
- Understanding of the purpose of each sampling site
- Sound Q/A programs ... proper record keeping
- Expeditious review of measurements ... flagging where appropriate.
- Validating elevated measurements ... checking these samples against other area and regional measurements.

In summary

- Data is power It's the key to successful air quality planning!
- Air quality models, state implementation plans, and progress tracking must be built on a solid air quality data foundation.
- Rapid collection, evaluation, and reporting are central to informing the public of health-related air quality problems and issues.
- The Air Quality System (AQS) is the backbone of EPA's NAAQS setting, regulatory impact analysis work, and future national program evaluations!